Our Nation's Highways

Selected Facts and Figures

The information in this publication provides a condensed overview of facts and figures about our Nation's highways. It is considered to be of interest to the average citizen Except where noted, the Federal Highway Administration is the source of the data provided by the States. For more detailed data on many of the subjects covered, refer to the publication, Highway Statistics, published annually by the Office of Highway Information Management, Federal Highway Administration.

Cover Photo

Route $92 / 101$ interchange in San Mateo County, California. The sweeping freeway-to-freeway connectors provide the motorist with an almost imperceptible transition between the two major freeways.

Contents

Transportation Expenditures at the Household Level

After housing (31.3 percent), transportation (18.1 percent) accounts for the largest single household expenditure, and 62 percent of transportation expenditures at the household level are for personal vehicles, gas, and oil.
Source: U.S. Bureau of Labor Statistics, Consumer Expenditures Survey: Results from 1990.

Personal Travel by mode of Transportation

The personal motor vehicle (automobile,

Public Transportation (2.5\%)

-Bus, Streetcar - 1.5\%
-Train-0.6\%
-Subway - 0.4\%

Other Means (9.3\%)
-Airplane-6.3\%
-School Bus-1.4\%
-Walking - 0.5\%
/-Biking - 0.1% light truck, van, and motorcycle) is the predominant form of personal transportation. Privately owned vehicles are used for 88.2 percent of all personal travel. When school bus (1.4\%) and bus/streetcar (1.5\%) are added to the Private Vehicle portion, we find that over 90 percent of personal transportation is served by highways.
Source: Federal Highway Administration, Nationwide Personal Transportation Survey, 1990.

Freight Transportation by Mode

n 1990, the Nation's highway system arried 31.6 percent of the total revenue on-miles of freight compared to 17.9 jercent in 1980.
iource: U.S. Department of Transportation, National ransportation Statistics: Annual Report, June 1992.

Gross National Product and Travel Relationship

'here is a strong relationship between the vation's economy and travel on the Jation's highway system. Since the 930's, growth in the Gross National 3roduct (GNP) and vehicle-miles of travel VMT) reflect strikingly similar patterns
(with the exception of the World War II period), including the period of energy disruptions during the 1970's. Since the early 1980's, VMT and the GNP have grown at essentially the same rate.

Annual Vehicle-Miles of Travel per Capita

Highway travel by Americans, expressed as vehicle-miles of travel per capita, far exceeds highway travel by citizens of other
major countries. In 1990, VMT per capita ir the United States reached 8,560, a 27 percent increase compared to 1980.

Source: International Road Federation, World Road Statistics 1986-1990.

Automobiles per Capita

The United States had the highest number of automobiles in 1990. Japan has consistently had the lowest number of automobiles per capita, however their
truck and bus registration growth closely follows the United States in the number of trucks and buses per capita.

Source: U.S. Department of Energy, Trànsportation Energy Data Book: Edition 12, March 1992.

Innual Household-Based Motor Vehicle Travel or Selected Purposes

1 1990, the average household traveled Imost 5,000 miles for commuting to work. he recent growth in household-based shicle travel has primarily been for ommuting and for other family and
personal business, which includes purchase of services and giving others a ride. There were only slight increases in travel per household for shopping and social/recreational purposes.

ource: Federal Highway Administration, Nationwide Personal Transportation Studies (1969, 1977, 1983, 1990).

Highway Indicators

While road and street mileage have increased only 4 percent since 1970, the number of vehicles using those roads and streets
has increased 78 percent. Highway capital outlay expressed in constant 1970 dollars has actually decreased by 1.7 percent.

Federal and State Gasoline Tax Rates

Despite significant increases in State motor-fuel tax rates during the 1980's, the weighted average gasoline tax rate expressed in constant 1970 cents actually decreased by 35 percent from 7.02 cents per gallon in 1970 to 4.59 cents per gallon in 1990. In 1991, twentytwo States increased their gasoline tax
resulting in an 8 percent increase over 1990. Over the same 1970 to 1990 period, the Federal gasoline tax rate expressed in constant 1970 cents increased by 5 percent, from 4.00 cents per gallon to 4.19 cents per gallon as the rate increased; from 4.00 cents per gallo to 14.10 cents per gallon.

tighway Expenditures per Vehicle-Mile of Travel

11990, capital expenditures, expressed in ents per vehicle-mile of travel (VMT), were 65 as compared to 1.04 in 1970-a 58.7 ercent increase. After accounting for flation, capital expenditures per VMT in 390 were 0.53 -a 49.0 percent decrease. i 1990, total highway expenditures, xpressed in cents per VMT, were 3.48 ompared to 1.88 in 1970-an 85.1
percent increase. When inflation is taken into account, total highway expenditures per VMT in 1990 were 1.03-a 45.2 percent decrease. In effect, in 1990, highway expenditures by all units of government on a per Vehicle-Mile of travel basis were about one-half of what they were 20 years ago.

Innual Vehicle-Miles of Travel by Household

ravel patterns typically reflect the omposition of the household unit. The resence of more than one adult in the ousehold, the presence of children, and
the ages of the children all have a great bearing on the average annual vehicle travel by the household.

[^0]
Jurisdictional Control of U.S. Roads and Streets

The vast majority (74.8 percent) of the Nation's roadways are under the jurisdiction of local governments (town, city, county). Only 4.6 percent are under the jurisdiction of the Federal Government which includes roads in national forests and parks and on military and Indian
reservations. The Nation's most heavily travelled roadways (representing 20.6 percent of the total $3,880,151$ miles and including the entire Interstate System) are controlled and maintained by the State governments.

Jurisdiction	Rural Mileage	Percent	Urban Mileage	Percent	Total Mileage	Percent
State local Fedeter	$\begin{aligned} & 702.562 \\ & 2,242.030 \\ & 178.196 \end{aligned}$	$\begin{aligned} & 225 \\ & 118 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 95.790 \\ & 650,549 \\ & 1.024 \end{aligned}$	$\begin{aligned} & 126 \\ & 8 \% 3 \\ & 0 . \end{aligned}$	$\begin{aligned} & 708,352 \\ & 3.902 .579 \\ & 179.220 \end{aligned}$	$\begin{aligned} & 20.6 \\ & 74.8 \\ & 4.6 \end{aligned}$
ratal	$\begin{aligned} & 3127888 \\ & \hline \end{aligned}$		757.363	1000	3, 880, 151	1000

Road and Street Mileage by Surface Type

Currently, about 58.2 percent of all roads and streets are paved, compared with about 23.5 percent in 1950. The total paved mileage has increased 230 percent
since 1950, but the total road and street mileage has increased by only 17 percent. Essentially all of the unpaved mileage is or lightly travelled rural roads.

"unctional Systems Mileage and Travel

loads and streets are grouped into anctional classes according to the type of ervice they provide, and to some extent, n how much traffic the facility carries. Ithough functional classification may hange over time to better describe the
changing role that a particular road or street may be playing, the total mileage changes only slightly over time. The rural major and minor collector systems actually decreased in mileage due, at least in part, to the expansion of urban boundaries.

otal mileage has increased only 0.6 ercent since 1980, while travel has creased 41.2 percent during the same me period. The urban travel increase of 0.7 percent has outpaced the rural 29.1 ercent increase due to the Nation's
continued growth in urbanization and expanding urban boundaries. The urban Interstate system has had the greatest travel growth (62.9 percent) during the 1980 to 1990 time period.

	$A n$	al Veh	Mivillous		1990		
FIIClione Systert		Sicrivit thange 1989 to 1490	Uiban	Srev		1820	
$12 \mathrm{t}=\mathrm{Sk} 4$ Sthet ree 4 ys) Majorybllw 4 NHOMSCHECLO Malstions H00, 1,121	2005 5	$4 i$	275.494	44		629	223
				669			
	370409	29.1.	092	S07	2414501	412	1000

Total Road Mileage and Travel by Functional Classification

Roads and streets are grouped into functional classes according to the type of service they provide. The arterial system (including the Interstate System) accounts for about 10.6 percent of the Nation's total roads and streets but carries 70.2 percent of total travel.

The Interstate System accounts for only 1.2 percent of the Nation's total miles of roadway; however, 22.3 percent of total travel occurs on this system. Conversely, local roads account for 68.6 percent of the Nation's total road and street mileage but only 13.7 percent of total travel.

:unctional Classification

sterial (including Interstate and other freeways)-The highest classification of roads and treets. Arterials provide the highest level of mobility, at the highest speed, for a long ninterrupted distance.
iollector-Provides a lower level of mobility than arterials at lower speeds and for a horter distance. Collectors connect local roads with arterials and provide some access ν abutting land.
ocal-The lowest classification of roads and streets. Local roads provide a high level of ccess to abutting land but limited mobility.

 Кемреол әןqesnun К|qeqoud 'рәңелоиәәәр

孔иәшәлеd әपІ's:086। әұеן of plu
 эᄀ pәиб!sse seounosen ןeos! pue uo!

Киеә pue s,0<6ь әцұ и! ұиәрілә sem децł

 ләңце өй и! рөлолdm иәлә sdeyıәd ло
 s, uoluen әиł uo suouppuoo әбеллле

Travel Congestion on Urban Interstate ${ }^{1}$

Fravel congestion on the urban Interstate jystem is steadily increasing, but at a ;lower pace in recent years. In 1990, ;9 percent of the peak hour travel on this ;ystem occurred under congested zonditions, while only 52 percent of the ravel occurred under these congested zonditions in 1980. The measure of
congestion used in this analysis is called the Volume/Service Flow (V/SF) Ratio. As this ratio gets larger, traffic slows and eventually stops as the theoretical value of 1.00 (the volume of traffic $=$ service flow capability of the facility) is approached. A V/SF ratio value of greater than or equal to 0.80 was used here to indicate congestion.

Bridge Conditions ${ }^{1}$

Thirty-eight percent of the Nation's estimated 573,078 bridges are structurally deficient or functionally obsolete. Twentyline percent of the 122,114 bridges on the vational Highway System (Interstate and all other principal arterials) are structurally deficient or functionally obsolete.
A structurally deficient bridge is closed or estricted to light vehicles only because of deteriorated structural components. Structurally deficient bridges are not
necessarily unsafe. Strict observance of signs limiting traffic or speed on bridges will generally provide adequate safeguards for those using the bridges.
A functionally obsolete bridge is one that cannot safely service the volume or type of traffic using it. These bridges are not unsafe for all vehicles, but have older design features that prevent them from accommodating current traffic volumes and modern vehicle sizes and weights.

	Watianal wibluay System		OHer fedtal And hightivis		Non Eederat 		Tothyshoys	
Stive Litay Deticient *IONer Ricers	$\text { 1. Sk } 40$	106		13. 132 643		Sk	367828	243 43 624
it liventory	31	1000	174162	180.0	$2 \pi 8 \cdot 12$	1010	$\$ 18076$	

[^1]
Motor Vehicle Fatalities

After a series of declines during the mid 1970's and early 1980's, the number of fatalities increased from 1986 to 1988, and then started to decline again. In 1988, there were 47,093 fatalities compared to 44,529 in 1990. The lowest number of fatalities in the 1970 to 1990 time span occurred in $1983(42,589)$, while the largest number was in $1972(55,704)$. Of the 44,529 1990 fatalities, 4,941 (or 11.1
percent occurred on the Interstate System. An estimated 49.5 percent of highway fatalities in 1990 were alcohol related. According to preliminary data for 1991, fatalities still continue to decrease even though travel continues to increase.
The reported use of seat belts and air bags continues to rise dramatically. Seat belt use in States that have use laws now averages 54 percent.

Fatality Rates

The fatality rate-fatalities per 100 million vehicle-miles of travel (VMT)-on all highway systems continues to decline. In 1990, the fatality rate reached 2.07, a 57 percent decrease from 1970. The decrease in the fatality rate occurred despite a 91.6 percent increase in highway travel and a

78 percent increase in motor vehicle registrations during the 1970 to 1990 time period. The fatality rate (1.10) on the Interstate System is a little over one-half the rate on all highway systems. Preliminary data for 1991 indicates a further decline in the fatality rate on all systems.

Fatalities by Collision Type

In 1990, multiple motor vehicle collisions made up almost 40 percent of all fatal accidents with angle collisions making up nearly half of them. Collisions with pedestrians, bicycles and other
nonmotorists made up 19 percent of the fatal accidents. The remainder are singlevehicle accidents, including nearly 10 percent resulting from overturns.

Source: National Highway Traffic Safety Administration, Fatal Accident Reporting Sysitem, 1990.

Fatalities Involving Medium/Heavy Trucks ${ }^{1}$

There were 5,254 fatalities in accidents involving medium and heavy trucks in 1990. Occupants in other vehicles accounted for

4,057 or 77 percent of the fatalities involving medium and heavy trucks.

[^2]
Motor Vehicle Registrations

The number of registered motor vehicles continues to increase steadily. Automobile registrations have increased 18.1 percent (22.0 million) since 1980 while truck registrations have increased
32.1 percent (10.8 million). Light singleunit trucks have seen a phenomenal growth in popularity since 1980 and now account for 19.8 percent of total registered motor vehicles.

Motor Vehicle Retail Sales

otal motor-vehicle retail sales reached an Il-time peak of $16,323,000$ units in 1986. letail sales of automobiles accounted for 5.2 percent of total sales in 1991 ompared to 78.3 percent in 1980. This ecrease reflects the growing popularity of
light trucks as personal vehicles. Retail sales of trucks reached a record 5,149,000 units in 1988 (an increase of 107 percent compared to 1980) and have decreased slightly to $4,365,000$ in 1991.

Surce: Motor Vehicle Manufacturers Association of the United States, inc., Economic Indicators-The Motor whicles Role in the U.S. Economy, 4th Quarter, 1991.

Average New Car Selling Price

The average new car selling price reached $\$ 16,012$ in 1990, an increase of 4.7 percent over the 1989 price of $\$ 15,292$. The average price has risen 352 percent since 1970 . This reflects general price inflation and the changes in the
characteristics of the vehicles purchased. Current model vehicles include mandated safety and emissions equipment plus a host of optional equipment like air conditioning, that were not typical of 1970 model cars.

Source: Oakridge National Laboratory, Transportation Energy Data Book, Edition 12.

Passenger Cars in Use by Age (as of July 1, 1991)

The average age of passenger cars in use in 1991 was 8 years compared to 7.6 years in 1985, 6.6 years in 1980, 6.0 years in

1975, and 5.6 years in 1970. These increases reflect a growing trend in keeping passenger cars for a longer period of time.

[^3]Cost of Owning and Operating
Automobiles, Vans, and Light Trucks-1991

;ource: Federal Highway Administration, Cost of Owning \& Operating Automobiles, Vans \& Light Trucks 1991. Includes fuel oils, tires, maintenance, insurance, depreciation, finance charges, and taxes. Total Costs Over Twelve Years, based on 128,500 miles.

Jwnership and Operating Costs

y Category Intermediate Size Vehicle (Based on Average Cost of 33.4 Cents Per Mile)
he Federal Highway Administration stimates that combined Federal and State רotor-fuel taxes currently account for only .1 percent of the cost per mile of owning nd operating an automobile compared to .7 percent in 1970.

ource: Federal Highway Administration, Cost of Owning \& Operating Automobiles, Vans \& Light Trucks 1997.

Licensed Drivers by Age and Sex

There were 167,015,250 licensed drivers in the United States in 1990. Although the 30-34 age group contains the largest percentage of licensed drivers, the average age of licensed drivers is shifting upward as the average population ages and as older drivers continue to hold licenses. Drivers age 60 and older now represent
18.9 percent of total licensed drivers compared with 16.3 percent in 1980. Forty-eight percent $(81,222,800)$ of the estimated 167 million licensed drivers in 1990 were women. The number of female drivers has increased 19 percent since 1980 compared with a 11.1 percent increase in male drivers.

Licensed Drivers, Population, and Motor Vehicles

In 1950, 57 percent of the driving age population was licensed to drive a motor vehicle. By 1990, 87.3 percent of the driving age population were licensed drivers. There were 1.26 licensed drivers
for every registered motor vehicle in 1950. In 1970 the ratio was about one to one, and by 1990 it had fallen to 0.89 or 1.1 vehicles per licensed driver.

Highway Fuel Use

Highway motor fuel use reached an all-time peak of 131.8 billion gallons in 1989 , falling slightly to 131.7 billion gallons in 1990 . Despite improved automotive fuel economy, highway use of gasoline increased through most of the 1980's as the population and number of automobiles increased.

Highway use of special fuel (diesel) increased both in real terms and as a
proportion of total highway fuel use as the percentage of trucks in the traffic stream has increased.
Gasohol sales for 1990 were up 1,417 percent from 1980 with sales for 1989 and 1990 down somewhat from the mid 1980's. The drop may be due to the expiration of State fuel tax incentives for gasohol and other alcohol fuels.

Vehicle-miles of Travel, Highway Fuel Use, and Miles per Gallon of Fuel for All Vehicles

Indices for vehicle-miles of travel, highway fuel use, and average vehicle fuel economy (miles per gallon) have increased significantly through the last decade. Average fuel economy for all vehicles has increased from 12.0 miles per gallon (mpg)
in 1970 to 16.3 in 1990, a 36 percent increase. This improved fuel efficiency made it possible to have a 94 percent increase in vehicle-miles of travel with only a 43 percent increase in fuel use.

Vehicle-Miles of Travel

Annual travel on the Nation's highways reached an estimated 2.2 trillion vehiclemiles in 1991, or about three times the level reported in 1960. Travel grew about 54 percent during the 1960's, another 38 percent in the 1970's, and another 41 percent in the 1980's. Annual travel on roads and streets in urban areas
accounted for 1.3 trillion vehicle-miles in 1991 or 60 percent of total travel compared to 44 percent in 1960. Compared to the urban travel growth of 49 percent in the 1980's, rural travel grew at a level of 30 percent. Preliminary 1991 rural and urban data show little growth over 1990.

Annual Vehicle Miles

Rural Interstate Travel by Vehicle Type

On rural Interstate routes in 1990, sombination trucks with 5 or more axles xccounted for 16 percent of average daily raffic volumes but 91 percent of equivalent axle loads. ${ }^{1}$ All other vehicles accounted
for 84 percent of traffic volumes but only 9 percent of traffic loads. From 1980 to 1990, traffic volumes on rural Interstate routes increased by 33 percent and equivalent axle loads increased by 48 percent.

Distribution of Average Daily Traffic Volumes and Equivalent Axle Loads on the Rural Interstate System as a Percent of Total ${ }^{1}$ (by Vehicle Type)

Equivalent axle loads provide a means of measuring vehicle wear on pavements by relating them to an 18,000 pound single axle load.
All 2-axle, 4-tire trucks. Includes pickup trucks, panel trucks, vans, and other vehicles (such as campers, motor homes, etc).
All vehicles on a single frame have either two axles and 6 tires or 3 or more axles (including camping and recreational vehicles and motor homes).
jource: Highway Statistics 1990 (from data collected at truck weigh sites).

Travel by Vehicle Type

Travel by 2-axle, 4-tire trucks has increased over 275 percent compared to 1970 and now represents 21.7 percent of total annual vehicle-miles of travel versus 11.1 percent in 1970. Travel by combination trucks has increased almost 175 percent compared to 1970 and now accounts for 4.5 percent of
total annual travel versus 3.2 percent in 1970. Although travel by passenger cars has increased 65.3 percent compared to 1970, the percentage of annual travel by passenger cars in relation to travel by all vehicles has decreased from 82.6 percent ir 1970 to 70.6 percent in 1990.

Average Annual Miles Per Driver by Sex and Age Groups

4 significant increase in the average niles driven by men and women in all age groups was noted in the 1990 Nationwide Personal Transportation

Survey compared to results for earlier surveys conducted in 1969, 1977, and 1983. This increase was particularly prominent in driving by women.

iource: Federal Highway Administration, Nationwide Personal Transportation Surveys, 1969, 1977, 1983, and 1990.

Federal Highway Trust Fund Receipts

Most receipts from the Federal taxation of motor fuel, along with a number of other highway-related taxes are deposited in the Federal Highway Trust Fund. The Trust Fund is made up of two accountshighway and mass transit-and is dedicated for the funding of Federal surface transportation programs. In this way, taxes on highway users are used to
fund highway facilities. The Trust Fund has provided a stable funding source for highway programs since it was established in 1956. Motor-fuel tax receipts accounted for $\$ 14.999$ billion in Fiscal Year 1991, or 88.3 percent of all Trust Fund tax receipts. Other taxes accounted for $\$ 1.980$ billion. The balance in the Trust Fund earned interest income of $\$ 1.474$ billion.

Note: Includes Mass Transit Account.

Federal Highway Trust Fund Balance and Commitments

The balance in the Highway Trust Fund has grown from $\$ 9.581$ billion at the end of fiscal year (FY) 1983 to $\$ 19.496$ billion at the end of FY 1991. At the end of FY 1991, the Highway Account held a balance of $\$ 10.246$ billion and had unpaid commitments of $\$ 32.145$ billion. Funds for
highway projects are committed when the project is initiated and are paid out as the project progresses. Because construction projects are long term in nature, the highway-user tax revenues can be committed to projects in advance of actual tax collection.

Note: The Highway Trust Fund was established July 1, 1956; the Mass Transit Account was established April 1, 1983.

Federal-Aid Highway Obligations

 by Type of Improvement-1989-1991Jbligations of Federal-aid highway funds otaled $\$ 43.4$ billion for the 3 -year period 1989 through 1991-an average of
$\$ 14.5$ billion per year. Reconstruction work represents the largest portion of obligations during this period.

Highway Receipts by Category Highway Expenditures by Function

Total receipts for highways by all units of government reached $\$ 63.9$ billion in 1990-a 240 percent increase compared to 1970. Highway-user fees, which make up the largest share of receipts, account for 59.8 percent compared to 70.4 percent in 1970. General fund appropriations make up a growing share of highway receipts and now account for 15.3 percent of the total compared to 10.1 percent in 1970.

Capital expenditures currently account for 47.4 percent of highway expenditures compared to 55.6 percent in 1970; maintenance accounts for 26.3 percent compared to 22.7 percent in 1970. Expenditures for administration, highway patrol, and bond interest also account for an increasing share of total expenditures- 21.8 percent in 1990 versus 15.8 percent in 1970.

[^4]
TOTAL HIGHWAY RECEIPTS AND EXPENDITURES

 by Governmental UnitState governments account for the largest shares of highway receipts and expenditures, but the shares attributed to local units of government have increased significantly since 1970. Municipalities and counties now account for 27.1 percent of total receipts and 38.1 percent of total expenditures
compared to 17.8 percent and 30.2 percent, respectively, in 1970. Receipts collected by the Federal Government for highways have increased over 136 percent compared to 1970; however, the relative share of total receipts has decreased from 28.3 percent in 1970 to 19.6 percent in 1990.

Highway Receipts

Highway Expenditures

Jote: Expenditures by the Federal Government only reflect direct expenditures by Federal agencies, Federal ransfers are included with amounts shown for State and local governments.

Highway Capital Expenditures and Maintenance Expenditures by All Units of Government ${ }^{1}$

Highway capital expenditures in 1990 increased 206 percent compared to 1970; however, due to inflation, capital expenditures in 1990 (expressed in constant 1970 dollars) were actually 1.7 percent
below the 1970 level. Maintenance expenditures in 1990 increased 318 percent compared to 1970. Again, accounting for inflation, maintenance expenditures in 1990 were only 5.5 percent above the 1970 level.

${ }^{1}$ Capital Expenditures include construction, engineering, and right-of-way.
Highway Price Trends

Federal Highway-User Fees ${ }^{1}$

User Fee Type Rate on January 1,1992
Votor Fuels ${ }^{2}$

Gasoline	14.1 cents per gallon
Gasohol	
Made with Ethanol Made with Methanol	8.7 cents per gallon 8.1 cents per gallon
Jiesel Fuel	20.1 cents per galion
Other special Fuels	14.1 cents per gallon
Fires	0-40 pounds, No Tax
	Over 40-70 pounds, 15 cents per pound in excess of 40 pounds
	Over $70-90$ pounds, $\$ 4.50$ plus 30 cents per pound in excess of 70 pounds
	Over 90 pounds, $\$ 10.50$ plus 50 cents per pound in excess of 90 pounds
Fruck and Trailer Sales	12 percent of retailer's sales price for trucks over 33,000 pounds gross vehicle weight (GVW) and trailers over 26;000 pounds GVW
Feavy Vehicle Use	Annual Tax:
	Trucks 55,000-75,000 pounds GWW, $\$ 100$ plus $\$ 22$ for each 1,000 pounds (or fraction thereof) in excess of 55,000 pounds
	Trucks over 75,000 pounds GWW, \$550

See table FE-101 in "Highway Statistics 1990" for a more complete description of Federal Highway-User Fees. Motor fuel tax rates shown include 0.1 cent per gallon dedicated to the leaking underground storage tank trust fund and 2.5 cents dedicated for reduction of the national debt.

Highway Trust Fund Authorizations

or FY 1992, 1993, and 1994^{2} (in Millions of Dollars)

Selected Programs			
nterstate Construction ${ }^{3}$	\$1,800	\$1,800	\$1,800
nterstate Maintenance ${ }^{3}$	2,431	2,913	2,914
nterstate Substitute (Highway)	240	240	240
Vational Highway System	3,003	3,639	3,599
jurface Transportation Program	3,418	4,096	4,096
Jongestion Mitigation/Air Quality Improvement	858	1,028	1,028
3 ridge Replacement and Rehabilitation	2,288	2,762	2,762
-ederal Lands Highways	371	445	445
Equity Adjustments ${ }^{4}$	2,236	2,055	2,055
3cenic Byways	11	13	14
Emergency Relief	100	100	100
-ighway Safety (FHWA and NHTSA)	178	201	201
notor Carrier Programs	71	76	80
-ligh Speed Ground Transportation	5	50	105
ntelligent Vehicle Highway Systems	94	113	113
Other Research Programs	21	25	30
Jemonstration Projects	553	1,235	1,169
)ther Programs, Projects, and Studies	129	111	152
Total	17,806	20,903	20,902

Authorized by the Intermodal Surface Transportation Efficiency Act of 1991 . Excludes authorizations for mass transportation programs and funds transferred to the National Recreational Trails Trust Fund.
Fiscal year starts October 1 and ends September 30.
Interstate funds are made available 1 year in advance of the year for which they are authorized.
Some of the equity adjustments were estimated. Actual amounts are determined annually.

STATE	Total Registered Vehicles	Total Licensed Drivers	Highway Motor Fuel Use (Thousands of Gallons)	Total Road and Street Milleage	Annual Vehicle-Miles of travel (Millions)
A MSAM/			W\%\% 2 264414:	9623]	\% W W \% \%
ALASKA	477,325	314,300	319,675	13,485	3,979
SM1/804		3926]8	1986916	51312	35486
ARKANSAS	$1,1,477,660$	1,722,021	1,589,613	77,085	21,011
Chilfonie.		10845966	4,66066\%	16\%374	268.966
COLORADO	$\begin{gathered} 3,155,371 \\ 468,960 \end{gathered}$	2,043,003	1,715,927	77.580	27,178
coviectcel		2.211416	1, 48 \% 92	1939	26343
DELAWARE	$526,089$	484,801	385744	5,444	6,548
RIs Of Oef		.. $1133 / 3$	18833	4,08	3,407.
FLORIDA	$10,949,806$	9,231,405	6,674,542	108,085	109,997
S888cta	W.	4474630	422, 31	109.80	\%3,46
HAWAll	-771,478	677,626	386,683	4,099	8,066
18316		W, 014	69\%14	62435	9489
1 LINOIS	$\begin{array}{r} 7,873,189 \\ 836,66 \end{array}$	7,294,732	5,401,318	135,944	83,334
NEMN		- 6 ces 64	3203M	91908\%	93, 6 git
IOWA		1,872,486	1,672,095	112,541	22,993
Manca		174s00	1.49\%666	33Sbs\%	22899
KENTUCKY	$=\underset{2,909,408}{2}=\pi$	2,401,661	2,269,560	69,668	33,639
W01814M	2. 2.2094 HE	239446\%	\%165512	36820.	36667\%
MAINE	976,610	887,042	689,243	22,389	11,871
M $\mathrm{MW} / 4 \mathrm{C}$		-3,361986	33 MT	28.3	41585
MASSACHUSETTS	3,725,798	4,229,311	2,606,120	34,076	46,130
Wheriche		6.4049\%	$4 \mathrm{CrB5}$	11449	8109\%
MINNESOTA	$3,507,937$	2,528,941	2,200,420	129,397	38,946
Mississlef	1) W1815446.	1,684514	S24461	72520	243585
MISSOURI	3,904,679	3,688,081	3,278,949	120,527	50,883
MOMTAMA		603.E4	5560\%4	71, 397	
NEBRASKA	1,383,846	1,088,677	960,089	92,403	13,958
Mryma		849, ${ }^{40}$	759189	46964	10215
NEW HAMPSHIRE	945,743	843,470	545,268	14,836	9,844
4-WWHasEY	4,	6884\%2	\% 30986	342s?	58989
NEW MEXICO	1,301,261	1,073,816	999,775	54,736	16,148
M14, \%h\%	WM, 19196, 33×10		6.ers.59\%	11.24ce	106,904
NORTH CAROLINA	5,162,005	4,550,644	3,833,565	94,690	62,707
MOH1/DAROTA		448898	403529	8657	510
OHIO	8,410,466	7,427,409	5,589,810	113,600	86,972
0k4 ACOMA		23 mbt	109852t	111. 6	Bics
OREGON	2,445,487	2,211,551	1,654,642	94,969	26,738
SEMIS*VGM/	$\begin{aligned} & \text { T } 971,646 \\ & 671,307 \end{aligned}$	18080\%	S4SESt	1 BE 68.	4686808
RHODE ISLAND		670,651	401,575	6,111	7.024
SOHHEASHINA		2,372825	2 186 ST	4-846.	3436
SOUTH DAKOTA	703,786	492,378	459,089	74,696	6,989
TENNESSE		3 3 344485	3146689	84889	46717
TEXAS	$12,799,815$	11,136,694	9,878,988	305,951	162,232
UFAL	$\left.\right\|_{461,796}$		-80256	3324,	W4444
VERMONT		411,920	321,099	14,121	5.838
VASKIA		4388808	348820	06040)	\%. 6017
WASHINGTON	4,256,866	3,376,671	2,593,986	81,299	44,695
WEST MAMML		1289709	1008365	34.592	\% 1548
WISCONSIN	3,671,859	3,327,872	2,453,244	109,876	44,277
WremMe	4xivish642	330 5 545	45904	39314	4, 8388
u.s. TOTAL	188,655,462 167,	167,015,250	130,765,720	3,880,151	2,147,501

[^5]| Total Fatalities per
 Highway 100 Million
 Fatalities VMT | Total
 Highway Total Dis-
 bursements
 for Highways
 Capital Outlay
 (Thousands) Thousands) | Payments
 into the Apportion-
 ments from
 the HTF
 Federal HTF
 (Thousands) (Thousands) |
| :---: | :---: | :---: |
| 4.312 | | |
| $95 \quad 2.39$ | 144,502 335,606 | 27,898 166,582 |
| | \%88, 362 $=$ \% | 196:32*** |
| 604 2.87 | $224,787 \quad 455,772$ | 176,034 151,472 |
| ,189.\#\#\#******90 | | 1060.224**** 1/423224\% |
| 544×2.00 | 409,155 713,865 | 145,902 246,224 |
| S44\%MW | | 142615 |
| 138 2.11 | 145,255 315,398 | 36,440 52,521 |
| | | 17888 |
| 2,892 2,63 | 946,156 1,677,330 | $611,826 \cdots 368,877$ |
| | | |
| $177 \quad 2.19$ | 201,420 297,429 | 31,816 235,364 |
| 244**) | | 54,594******8 859 |
| 1,589 1.91 | 1,380,825 2,644,884 | 513,839 526,383 |
| 1050**\#\#\#\#.466, | | \$32.639 : $* * *: 22 \times 468$ |
| $465 \quad 2.02$ | 327,345 868,534 | $155.853 \quad 202,155$ |
| | B41184** | 153\%36 |
| 846 | 463,726 1,007,942 | 226,492 186,771. |
| 986. . | | |
| 213 - 1.79 | 155,140 332,059 | 69,779 69,881 |
| 682 | 76600\%****,464380 | HikT2 |
| 605 1.31 | 406,246 1,054,901 | $240.693 \quad 898,092$ |
| 1565\%mank | 4c08688\% ${ }^{\text {a }}$ | |
| $566 \quad 1.45$ | 607,796 1,228,208 | 208,872 196,329 |
| 746\% | | $159116 \pm \pm *$ - 50860 |
| 1,097 2.16 | 382,848 937,395 | 331,821 290,010 |
| | | 65,9\% |
| 262 2 1.88 | 234,384 448,875 | $87,239 \quad 115,657$ |
| | 162.662 ******308665 | |
| $158 \quad 1.61$ | 85,140 298,592 | 50,826 59,244 |
| W.886 MNM | | |
| 499 3.09 | 238,290 408,632 | 95,485 111,989 |
| | 1588.564\% | |
| 1,385 2.21 | 718,536 1,428,480 | 373,637 - 245,256 |
| 112.4. | 913.5. ${ }^{\text {a }}$, | |
| 1,636 1.88 | 771,573 2,270,849 | 533,373 505,953 |
| | 40,.414 | |
| $579 \quad 2.17$ | 314,429 765,097 | 166,945 142,408 |
| W | | |
| 84×1.20 | 146,219 213,775 | 38,586 124,699 |
| | | |
| 153 2.19 | 143,791 232,305 | 44,434 81,942 |
| | | |
| 3,241 2.00 | 1,797,511 3,000,955 | 915,875 863,043 |
| | | |
| $88 \quad 1.51$ | 71,800 164,983 | 30,156 63,314 |
| | | 631565. |
| 825×1.85 | 497,771 1,250,820 | 241,309 292,580 |
| | $20020 \% * * * 5000$ | |
| 769 1.74 | 460,968 978,591 | 241,548 218,754 |
| | 198883 ${ }^{\text {a }}$ | 3. $860 \% \%$ \% |
| 44,529 2.07 | \$26,254,131 \$53,580,046 | \$12,472,077 \$14,144,258 |

${ }^{1}$ Includes allocations.

1990 Relationships-
Population, Drivers, Vehicles, Fuel, and Travel ${ }^{1}$

STATE	Resident Population (Thousands)	Driving-Age Population (Thousands)	Licensed Drivers per Driving-Age Population	Registered Motor Vehicles per 1,000 Population	Licensed Drivers per Motor Vehicle
ALASKA					
A-rery					
ARKANSAS					
COLORADO					
SovM- 016					
DELAWARE	V. 666				
FLORIDA	12. 12,938				
HAWAII					
\pm					
ILLINOIS					
14.448					
IOWA					
10 N 人 18					
KENTUCKY	3,685 2,842 845				
MAINE					
MASSACHUSETTS					
MINNESOTA	4, 4,375 3,356 ${ }^{\text {c }}$				
	$55 / 3$ 				
MISSOURI	5,117 3,965 930				
NEBRASKA					
NEW HAMPSHIR	1,109 860				
NEW MEXICO					
M N\% \% \%					
NORTH CAROLINA	6,629 5,167 ${ }^{\text {c }}$				
1. ${ }^{\text {der }}$					
OHIO					
e4tesioy					
OREGON					
RHODE ISLAND					
SOUTH DAKOTA	W, 696				
TEXAS	16,987 12,542				
VERMONT					
\%Aobutas					
WASHINGTON					
W**					
WISCONSIN	4. 4,892 多				
,					
U.S. TOTAL	248,709	191,412	873	759	0.89

[^6]

Areas with Population Above 500,000

Urbanized Area	Location		Federal-Aid Estimated Urbanized Urbanized Land Population Area $(1,000)$ (Sq. Miles)		Persons per Square Mile	Total Highway Mileage
NUYObN Nowless	W, 1V, \# 11.					
LOS ANG.-LNG BCH-POM.-ONT	CA		11,428	2,100	5,441	25,073
	14, 41, \%ax		\%, $\mathrm{S}_{10 \mathrm{O}}$	4, 656	\% 48	$18,30 \mathrm{~g}$10,815
PHILADELPHIA	PA M		4,216	1,240	3,400	
DE17OI			Hetod	, 4	8,441	10,815
SAN FRANCISCO-OAKLAND	- 8 CA		3,676	816	4,504	9,008
Mes IM,			W, ${ }^{\text {a }}$		\$190	
DALLAS-FORT WORTH	$=T X \quad 3,030$			1,404	2,158	18,946
20610N				11033	$\hat{2} \leqslant$	9
HOUSTON			2,798	1,549	1,806	17,001
S\%M Brso			W, \% \%	68\%	sora	S 66
MINNEAPOLIS-ST, PAUL	$\begin{gathered} M N \\ M O \end{gathered}$		2,055	996	2,063	8,9
EASuMU ${ }^{\text {de }}$				\% 6	2602	3 S 4
ST. LOUIS				694	2,809	7,164
P10 Hide					, 97	93
ATLANTA	GA 1,860			1,198	1,552	9,691
10404					4.17	6,602
CLEVELAND	OH HA OA Q, 752			629	2,785	5,536
84801E E4S					2682.	6.42
PITTSBURGH	PA			1,033	1,653	7,565
, 3/V14				438	\%	5.936
SAN JOSE	CA 1,410			326	4,325	3,714
\% MSNSSITY				608	2,106	6, 20%
MILWAUKEE				550	2,218	4,788
				364	3, 6 ds	W\%
PORTLAND	OR WA $\quad 1,196$			416	2,875	4,514
SHNELH/ SC				480	44S\%	3760
SAN ANTONIO	$T X$ 1, 165			442	2,635	6,730
CNCTMA				664	2044	3 3/
SACRAMENTO	CA			340	3,223	3,495
W 44 ORM NL				664	2091	- 298
BUFFALO	NY 11,064			405	2,627	3,585
				454	164t.	
NORFOLK-PORTSMOUTH				809	1,145	3,480
HEMPUS				400	, 2 89	31
PROVIDENCE-PAWTUCKET-WARWICK	RH MA		880	536	1,641	4,336
					2045	
ORLANDO	FL 850			397	2,141	3,005
CTHOMSUS				306	,634	3/2
SALT LAKE CITY	UT 800			360	2,222	2,840
Qobsult				\% 2.359	2, 48	26
JACKSONVILLE	$\mathrm{FL}, \angle \mathbf{H}$				1,417	3,665
					288	
TAMPA	FL			392	1,785	3,2
98M4 4 - 1					, 318	4 t Stb
HONOLULU					4,822	
					1.341	$2=1+4$
ROCHESTER	NY 617			311	1,983	2,411
3 A W\% M				248	\%309	2,332
HARIFORD				357	1,666	2,395
G64M2ME				201	8000	$\text { <, },$
SPRINGFIELD-CHICOPEE-HOLYOKE	MA, CT			339	1,637	2,522
4, CHI			$348, ~ \%, ~+31$, 4 ,	
OMAHA	NE			213	2,525	2,312
					Q69\%	86954
AKRON	OH 18			216	2,388	2,627
WMOM/			$\text { N. } 2 \mathrm{~F}$	$\Delta 1$	\%ort	

*Annual average daily traffic.
Source: All data, except rail, reported by States through the Highway Ferformance Monitoring Study. Numbers may differ from subsequently published 1990 Census data. Rail data obtained from Federal Transit Administration and is the sum of Rail Rapid and Commuter Rail data.

Total Freeway/ pressway Mileage	Daily Highway ehicle-Miles $(1,000)$	Daily Freeway Vehicle-Miles $(1,000)$	$\begin{array}{r} \text { Rail } \\ \text { Passenger } \\ \text { Miles } \\ (1,000) \end{array}$	VehicleMiles Capita	Average AADT* Total	Travel Served by Freeways	Average AADT Freeways
	65,759	18,325			6,080		
337	76,950	40,597	2,774	20.9	8,542	52.7\%	120,465
- ${ }_{\text {- }} 437$		wwis 35,812		26.4	4,233		
	$71,613$	29,255		$\frac{25.5}{524}$	$4,212$	40.8%	$92,873$
3 3fumquw							
	45,288	18,415			6,322		
	64,831	24,261					
部4846							
	32,466	7,196					
165	32,445	15,781		23.0	8,736		
	28,659				5,986		
	22,416	8,879					
680 = = =							
162	25,317	9,279		21.7	3,762		
97	23,619	9,266					
	17,003						
	20,273						
72.46							
115	17,358	5,115			4.00		
	17,730						
140 践							
	10,968						
	13,898	6.225		23.3	5,803	44.7\%	61,63
	10.919	3,396		19.6			42,450

[^0]: uurce: Federal Highway Administration, Nationwide Personal Transportation Sunvey 1990:

[^1]: ${ }_{2}$ Includes all interstate and other principal arterials.
 ${ }^{2}$ Includes all other highways except minor collectors and local roads and streets.
 ${ }^{3}$ Includes rural minor collectors and local roads and streets.
 jource: Federal Highway Administration, Office of Engineering

[^2]: ${ }^{1}$ Medium/Heavy Truck-Single-unit truck with gross vehicle weight greater than 10,000 Ibs., tractor-trailer combination, truck with cargo trailer(s), or truck-tractor pulling no trailer.
 Source: U.S. Department of Transportation, National Highway Traffic Safety Administration, Fatal Accident Zeporting System, 1990

[^3]: Source: Compiled by the Motor Vehicle Manufacturers Association from R.L. Polk and Co. data

[^4]: 1/ 1990 Figures.

[^5]: Notes: All units of government, 1990 data.

[^6]: ${ }^{1}$ Vehicle relationships exclude motorcycles.

